JUNIOR QUALIFYING EXAMINATION { August 2021 PART I

AM 1. Let a > 1 be a real constant. Show that $(1 + a)^n = 1 + na$ for all integers n = 0.

AM2. Let $C(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$.

- (i) Show that the equation C(x) = 0 has at least one solution in the interval [0; 2].
- (ii) Show that the equation C(x) = 0 has exactly one solution in the interval [0; 2].

AM 3. How many numbers are there in the set $S = f_{1;2;:::;3000g}$ that are divisible by at least one of 2, 3, or 5?

AM 5. De ne a function $f : R^2$! R as follows:

1

$$f(x;y) = \begin{pmatrix} \frac{2x^2y}{x^4+y^2} & \text{if } (x;y) \in (0;0), \\ 0 & \text{if } (x;y) = (0;0). \end{pmatrix}$$

- (i) Is f continuous at (0;0)? Explain.
- (ii) Do the rst partial derivatives of **f** exist at (0; 0)? If so, what are they (explain), and if not, why not?
- (iii) Is f di erentiable at (0;0)? Explain.

JUNIOR QUALIFYING EXAMINATION { August 2021 PART II

PM 1. For each of the following, either nd the limit or prove divergence:

(i)
$$\frac{X}{n=1} \frac{1}{n(n+2)}$$

(ii) $\frac{X}{n=0} \frac{3^{n}}{4^{n}}$
(iii) $\lim_{n \ge 1} \frac{3^{n} + 5^{n}}{2^{n} + 6^{n}}$
(iv) $\lim_{n \ge 1} \frac{1}{n} \frac{X^{n}}{j=1} \frac{j}{n}^{-3}$ (hint: Riemann sums).

PM2. Let
$$F(x) = \frac{R_{x^2}}{x} e^{\sin(t)} dt$$
. What is $F^{0}(x)$?

PM 3. For what real values of **k** do the vectors (3 k;

JUNIOR QUALIFYING EXAMINATION { April 2022 PART I

AM1. Let f ang be the sequence de ned recursively by

$$a_1 = 1$$
,
 $a_{n+1} = a_n + n n!$ for n 1:

Compute a few values of a_n until you can guess a general formula for a_n , then prove that your guess is correct.

AM 2. For each of the following, either nd the limit or explain divergence. (Here i is the usual number 1.)

(a) $\lim_{n \ge 1} \frac{(2 + \frac{i}{n})^2 - 4}{(3 + \frac{i}{n})^2 - 9}$ (b) $\lim_{n \ge 1} \frac{4^{n+1} + (3i)^n}{4^{n+2} + (2i)^n}$ (c) $\lim_{n \ge 1} \frac{X}{j=0} - \frac{(2n+1)^{-j}}{2n+3}^{-j}$ (d) $\frac{X}{n=0} \cos^3 \frac{n}{7} .$

AM 3. Suppose that positively and negatively charged particles are arranged in am n grid of the type shown here (in the m = n = 4 case).

randomly so that every node gets a particle. What is the expected number of attracting pairs in the grid?

AM 4. Consider the real matrices

2 3	4	1	4	73	2 1 0 1 0	13
, <u>§</u> 1	1	0	1	27		1Ţ
$A = \frac{4}{4}$	1	2	0	2 ^{5;}	$B = \frac{4}{4} 0 0 0 1$	25 [:]
3	2	1	4	9	0 0 0 0	0

You may take for granted that A and B are row equivalent.

- (a) Find a basis of the row space of A.
- (b) Find a basis of the column space of A.
- (c) Let T : R⁵ ! R⁴ be the linear transformation whose matrix relative to the standard bases isA. Find a basis for the null space (kernel) ofT.
- (d) Find a basis of the image of T.

AM 5. Let c be a nonzero real constant. Consider the surface $i \mathbb{R}^3$,

$$S = f(x; y; z) 2 R^3 : xyz = cg:$$

Let $p = (p_1; p_2; p_3) 2$ S, and let T be the tangent plane to S at p. Let the points of intersection of T with the three axes of R³ be (u; 0; 0), (0; v; 0), and (0; 0; w). Show that the product uvw is independent of the point p. As part of your argument, explain why u, v, and w exist, i.e., why T actually intersects each axis.

JUNIOR QUALIFYING EXAMINATION { April 2022

PART II

PM1. Let

$$f(x) = \begin{pmatrix} x^2 \sin(1=x) & \text{if } x \in 0; \\ 0 & \text{if } x = 0: \end{pmatrix}$$

- (a) For general x \in 0, does f $^{0}(x)$ exist? If so, what is it?
- (b) Does f $^{0}(0)$ exist? If so, what is it?
- (c) Does $\lim_{x \ge 0} f^{0}(x)$ exist? If so, what is it?
- (d) Is f⁰ continuous at 0?

(As always, remember to explain your reasoning.)

Show that one of the matrices A_i is diagonalizable over R, and the other one is not. For the one which is diagonalizable, nd an invertible matrix P and a diagonal matrix D such that P ${}^1AP = D$.

PM3. Integrate the function $f(x; y) = ye^{(x-1)}$